
1

Lecture 16 Slide 1PYKC 5 Dec 2024 EE2 Circuits and Systems

Lecture 16
(Supplementary)

spi2dac.v Explained

Peter Cheung
Department of Electrical & Electronic Engineering

Imperial College London

URL: www.ee.imperial.ac.uk/pcheung/teaching/E2_CAS/
E-mail: p.cheung@imperial.ac.uk

2

In order to use the DAC, you have to include the interface module “spi2dac” in your
design. This module has a schematic shown above. It takes two inputs (in addition
to the 50MHz clock signal): data[9:0] is the 10-bit digital data to be converted by the
DAC, and a load signal which is a high pulse to trigger the spi2dac module to send
the 10-bit data to the DAC.

The internal working of sp2dac can be divided into 4 main modules. The divide-by-
50 module is straight forward – it produces a 1MHz clock for the finite state
machine, and is gated through the AND gate to generate the serial clock signal (at
1MHz).
The load detector module handles the load command and produces control signals
to the SPI state machine and the shift register.

The shift register sends the control bits and the 10-bit data serially to the SDI output.
The spi controller FSM is the main control module designed as a state machine.

We will now consider each sub-module individually.

Lecture 16 Slide 2PYKC 5 Dec 2024 EE2 Circuits and Systems

Spi2dac.v design overview

 The components
inside spi2dac are:

1. Clock divider
2. Load detector to

detect load pulse
3. FSM to control the

spi interface
4. Parallel to serial

shift register to shift
OUT the command
and data to the
DAC

5. Various gates e.g.
inverters and AND
gates

 Note that the Verilog code is designed to match
the block diagram shown here

 It consists of TWO state machines, a counter
and a shift register

3

This is a straight forward clock divider. The Terminal Count (TC) is set to 24.
Divide by 50 is done by toggling the output (clk_1MHz) after 25 clock cycles.
Note that I generally prefer to use a down-counter instead of an up-counter.
The counter (ctr) is set to 24, it then counts to zero. Output is toggled and
the counter (ctr) is reset to the initial value of 24 again.

Lecture 16 Slide 3PYKC 5 Dec 2024 EE2 Circuits and Systems

The 1MHz clock generator

4

We have TWO signals to detect: the load pulse and the dac_cs signal.

Starting in the IDLE state, when load signal is asserted, we start the DAC cycle by
entering the WAIT_CSB_FALL state. In this state, dac_start is asserted, and we wait
for DAC_CS to go low from the SPI controller circuit. In this condition, the DAC is in
the middle of accepting a new data for conversion. We go to state WAIT_CSB_HIGH
TO wait for the conversion to be completed, which is indicated by DAC_CS going
high. When that happens, we return to the IDLE state waiting for another 10-bit
data to be loaded.

Lecture 16 Slide 4PYKC 5 Dec 2024 EE2 Circuits and Systems

The load pulse detector

WAIT_CSB_FALL

dac_start=1IDLE
dac_start=0

load
load

dac_cs
WAIT_CSB_HIGH

dac_start=1

dac_cs

dac_cs

dac_cs

5

The controlling FSM controller is actually simpler than it first appears.
We need a FSM to have 18 states. State 0 is the idle state, waiting for a new data to
be sent to the DAC. Here DAC_CS (which is low active) is ‘1’ and we wait for the
dac_start to be asserted.
The default value of dac_cs and state are specified first. By default we always go to
the next state, i.e. state value goes up by 1.
Once the state machine moves to state 1, it just go through to state 16, which
corresponds to cycle 0 to 15 in the timing diagram here. At the end of state 16, we
de-assert dac_cs (i.e. go high), and go back to the IDLE state.

Lecture 16 Slide 5PYKC 5 Dec 2024 EE2 Circuits and Systems

The SPI Controller FSM

6

Finally, the data and clock output is specified here. SDI is driven through a parallel
in, serial out shift register.
We use a number of useful tricks here:
1.cmd is a 4-bit value defining the first four bits of the SDI data values. We use
symbolic variable names to make the code easy to read.
2.Shift_reg <= {cmd, data_in, 2’b00} - parallel load the 16-bit value into the shift
register.

3.Shift_reg <= {shift_reg[14:0], 1’b0} - perform left shift

The SDI is taken from the MSB of the shift register. The serial clock Is !dac_cs (low
active) ANDed with the inverter version of the clock (making the rising edge of the
SCK signal in the middle of the data bit).

Lecture 16 Slide 6PYKC 5 Dec 2024 EE2 Circuits and Systems

The data shift register

